コンピュータグラフィックス

第4回

CG のための数学的基礎 1

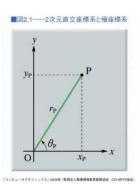
~ 2次元, 3次元座標系~

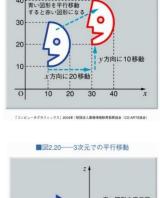
理工学部 兼任講師 藤堂 英樹

本日の講義内容

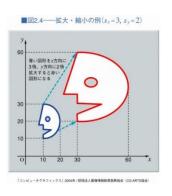
■CG のための数学的基礎 1

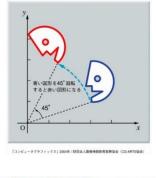
- 2次元座標系
- 3次元座標系



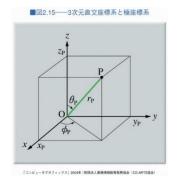


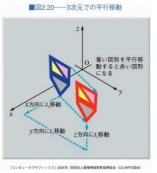
■図2.3-平行移動の例(t_x=20, t_y=10)

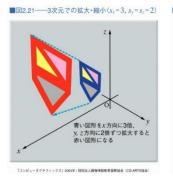


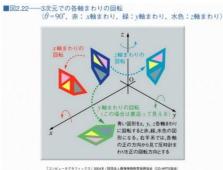


■図2.5---回転の例(θ=45°)



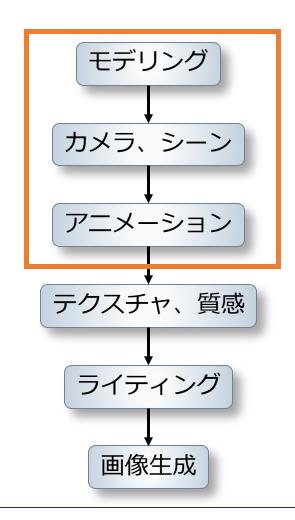






CG制作の主なワークフロー

■3DCGソフトウェアの場合



座標変換の用途

- ■キャラクターの配置
 - ・位置,大きさの調整
- ■キャラクターのポージング
 - 各関節角度の設定
- ■カメラの設定
 - ・ 視点変更, ズームアップ

少しやってみましょう!

今回使用するソフトウェア

- ■Unity: Game Engine
 - 無料バージョンがある
 - アセット(データ等のリソース)が豊富
- ■Unityちゃん: Unity用データ
 - ・無料で使える
 - ・ 2次創作が可能

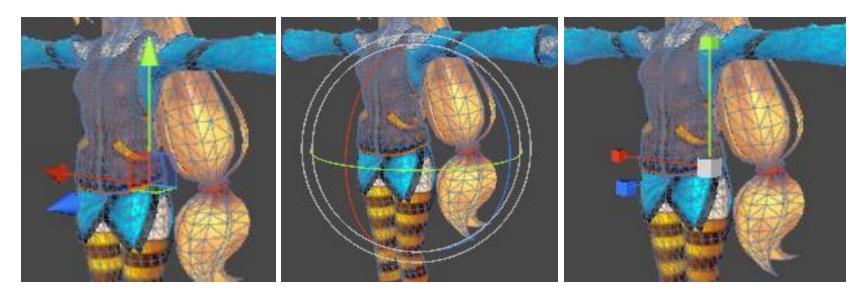
このコンテンツは、 『<u>ユニティちゃんライセンス</u>』で 提供されています。

基本的な操作

■動かしたい物を選択する

基本的な操作

■編集モードの切り替え



より細かいポーズの調整

- ■動かしたい場所を選択する ⇒回転操作でポーズを調整する
 - Vunitychan
 V Character1_Reference
 V Character1_Hips
 ► Character1_LeftUpLeg
 ► Character1_RightUpLeg
 ► Character1_Spine
 ► J_L_Skirt_00
 ► J_L_SkirtBack_00
 ► J_R_Skirt_00
 ► J_R_SkirtBack_00

ヒエラルキーによる選択

- ・モデル同士の親子関係
- 各関節を選択可能

2次元直交座標系と極座標系

■ 2 次元直交座標系

- x軸とy軸による表現
- $P = (x_P, y_P)$

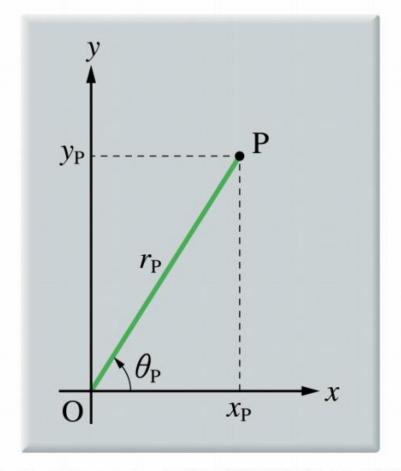
■極座標系

- ・距離と角度による表現
- $P = (r_{\rm P}, \theta_{\rm P})$

■対応関係

- $x_P = r_P \cos \theta_P$
- $y_P = r_P \sin \theta_P$

■図2.1--2次元直交座標系と極座標系



2次元図形の基本変換

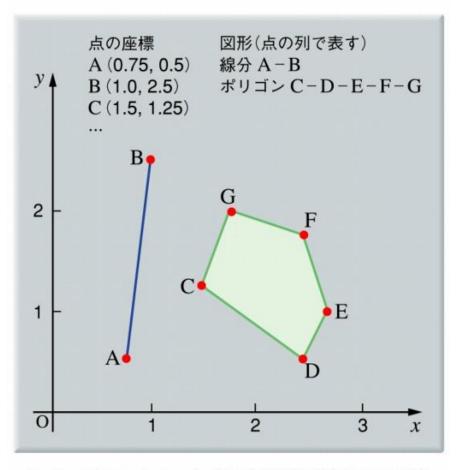
■図形の表現

- 座標と順序
- 例:線分,ポリゴン

■幾何学的変換

- 平行移動
- 拡大・縮小
- 回転

■図2.2---2次元図形の例

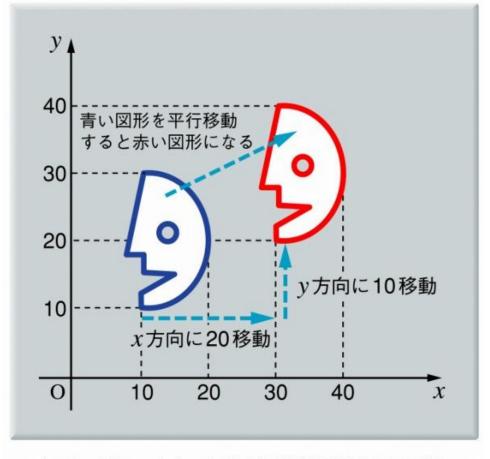


平行移動

\mathbf{z} , y軸方向に t_x , t_y 移動

- $x' = x + t_x$
- $y' = y + t_y$

■図2.3—平行移動の例 $(t_x = 20, t_y = 10)$

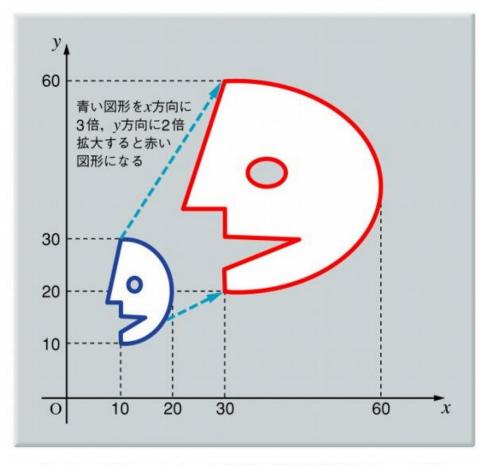


拡大・縮小

$\mathbf{z}_{x,y}$ 軸方向に $\mathbf{z}_{x,s_{y}}$ 倍

•
$$x' = s_x x$$

•
$$y' = s_y y$$

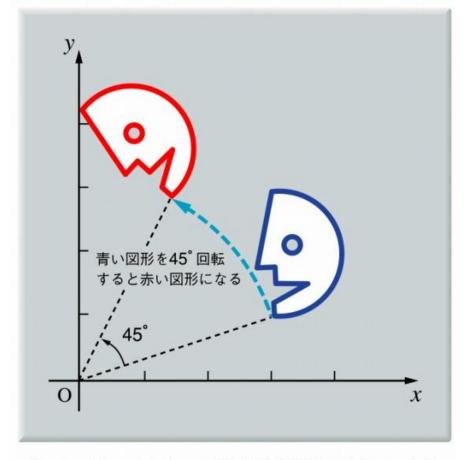


「コンピュータグラフィックス」2004年 / 財団法人画像情報教育振興協会(CG-ARTS協会)

■原点を中心に角度*θ*回転

- $x' = x \cos \theta y \sin \theta$
- $y' = x \sin \theta + y \cos \theta$

■図2.5――回転の例(*θ* = 45°)



「コンピュータグラフィックス」2004年/財団法人画像情報教育振興協会(CG-ARTS協会)

同次座標

■ベクトルで座標を表した場合

• 拡大・縮小:
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• 回転:
$$\binom{x'}{y'} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \binom{x}{y}$$

平行移動だけベクトルの足し算

同次座標

■同次座標

- 実数wで座標を拡張
- $(x,y) \Rightarrow (wx, wy, w)$
- 例:
 - (2,3,1) = (4,6,2)
- 通常は(x,y,1)の形

■図 2.6——直線 l 上のすべての点が通常座標の同じ点 (x_0, y_0) を表す



同次座標

■同次座標で表した場合

• 拡大・縮小:
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbf{S}(s_x, s_y) \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• 回転:
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbf{R}(\theta) \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• 平行移動:
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbf{T}(t_x, t_y) \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

全て行列の積で表すことができる

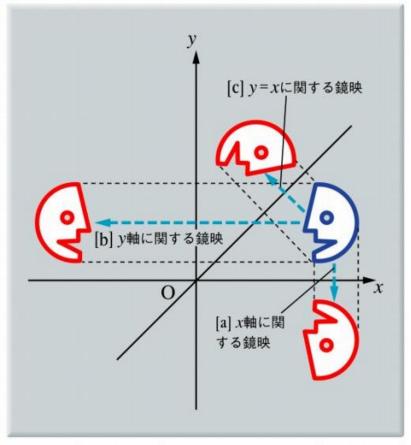
鏡映変換

■表2.1――鏡映における変換式

鏡映の種類	(同次座標による)変換式	図
x軸に関する鏡映		図2.8 [a]
y軸に関する鏡映	$ \begin{vmatrix} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} $	図2.8 [b]
直線 $y=x$ に関する鏡映		図2.8 [c]

「コンピュータグラフィックス」2004年/財団法人画像情報教育振興協会(CG-ARTS協会)

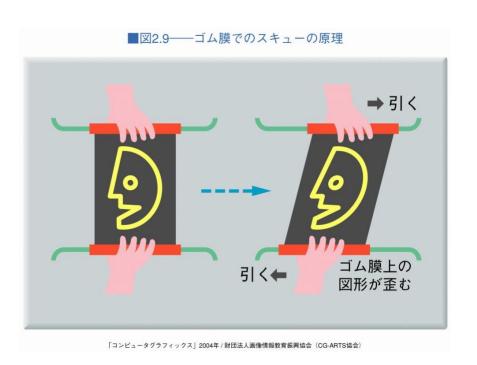
■図2.8──鏡映の例



「コンピュータグラフィックス」2004年 / 財団法人画像情報教育振興協会(CG-ARTS協会)

スキュー (せん断)

■長方形⇒平行四辺形の歪み



■図2.10 ---- スキューの例 [b] y軸方向の α [a] x軸方向の スキュー

スキュー(せん断)

■長方形⇒平行四辺形の歪み

スキューの種類	(同次座標による)変換式
<i>x</i> 軸方向のスキュー	$ \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} $
y軸方向のスキュー	$ \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} $

■図2.10 ---- スキューの例

合成変換

■点:
$$p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

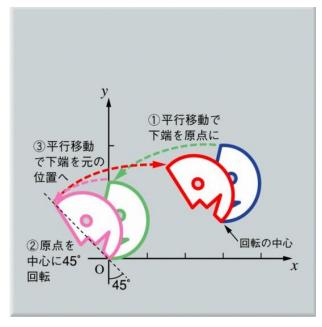
- ■変換の列: *A*₁, *A*₂, *A*₃
- ■合成変換: $p' = (A_3(A_2(A_1p)))$
- $\blacksquare A = A_3 A_2 A_1$ とするとp' = Ap

合成変換

■具体例

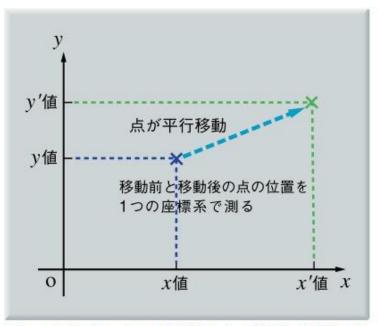
• 平行移動 $T(-x_0, -y_0)$ ⇒回転 $R(\theta)$ ⇒平行移動 $T(x_0, y_0)$

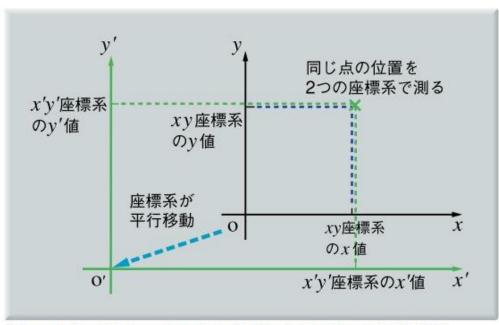
$$\bullet \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \mathbf{T}(x_0, y_0) \mathbf{R}(\theta) \mathbf{T}(-x_0, -y_0) \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$



■平行移動*T(x,y)の*解釈

■図2.13――平行移動の2つの解釈



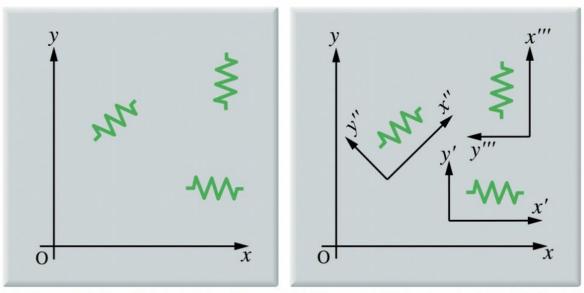


置との関係

[a] 1つの座標系における移動前の点の位置と移動後の位 [b] 1つの点に対するxy座標系での位置とx'y'座標系での位置の関係

- ■座標系を動かす解釈
 - 同じ図形をたくさん描く場合に有利

■図2.14――同じ図形を異なる位置や向きに描く場合



[a] 別々に座標値を指定しなければならな [b] 別々の座標系を用いて、同じ座標値で表い場合 せる場合

■幾何学変換の一般的な行列表現

$$\bullet \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

拡大・縮小,回転,スキュー

工: 平行移動

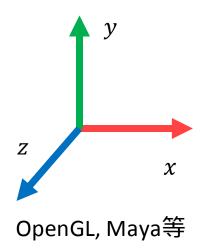
■種類

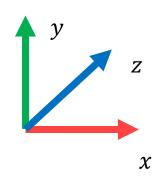
- ・ 剛体変換:形が変わらないアフィン変換
 - 平行移動,回転

3次元座標系

■直交座標系

- 右手系
 - zが手前を向いている
 - 映像制作系で一般的
- 左手系
 - zが奥を向いている
 - ゲーム制作系で一般的





DirectX, Unity等

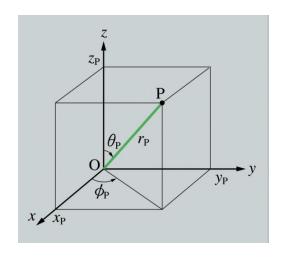
3次元座標系

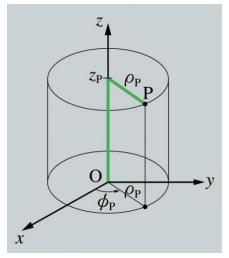
■極座標

- $x_P = r_P \sin \theta_P \cos \phi_P$
- $y_P = r_P \sin \theta_P \sin \phi_P$
- $z_P = r_P \cos \theta_P$

■円柱座標

- $x_P = \rho_P \cos \phi_P$
- $y_P = \rho \sin \phi_P$
- $z_P = z_P$





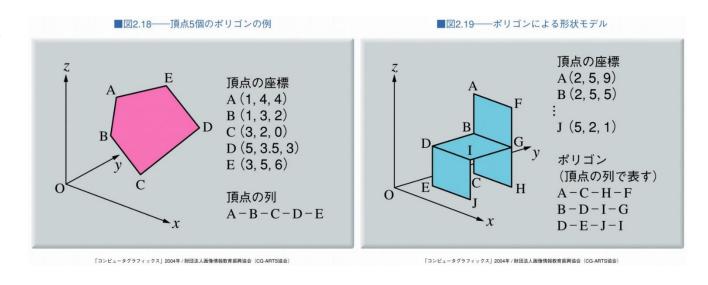
簡単なモデリング

■モデリング

- 3次元図形の形状をデザイン
- 形状モデル: 形状データ

■ポリゴン

- 頂点座標
- 順序



3次元の同次座標

■ 2 次元

• $(x,y) \Rightarrow (wx, wy, w) = (x, y, 1)$

■ 3 次元

- zの成分が増えるだけ
- $(x, y, z) \Rightarrow (wx, wy, wz, w) = (x, y, z, 1)$
- 2次元の場合と同様に平行移動等の変換を定義できる

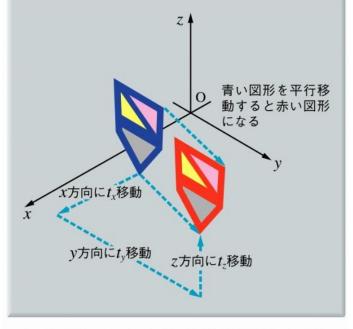
平行移動

 \mathbf{z} , y, z軸方向に t_x , t_y , t_z 移動

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$= \boldsymbol{T}(t_x, t_y, t_z) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

■図2.20 --- 3次元での平行移動



「コンピュータグラフィックス」2004年 / 財団法人画像情報教育振興協会(CG-ARTS協会)

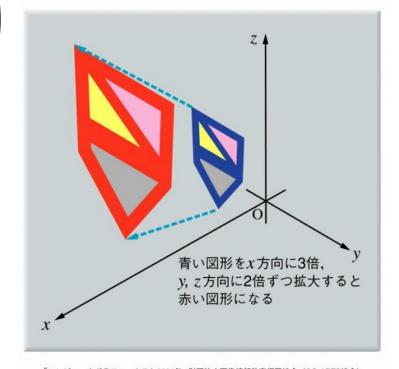
拡大・縮小

x, y, z軸方向に S_x, S_y, S_z 倍

$$\bullet \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$= \mathbf{S}(s_x, s_y, s_z) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

■図2.21 — 3次元での拡大・縮小 $(s_x=3, s_y=s_z=2)$



「コンピュータグラフィックス」2004年 / 財団法人画像情報教育振興協会(CG-ARTS協会)

■各軸周りの回転

z軸はまわりは2次元の場合と同じ

「コンピュータグラフィックス」2004年 / 財団法人画像情報教育振興協会 (CG-ARTS協会)

x 軸まわりの回転

y 軸まわりの回転

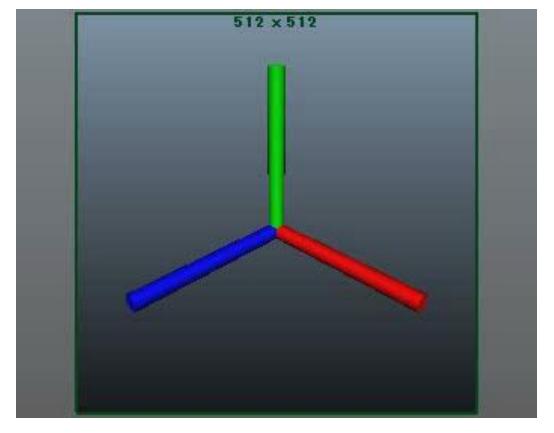
$$\bullet \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \mathbf{R}_{y}(\theta) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

z 軸まわりの回転

$$\bullet \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \mathbf{R}_{z}(\theta) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

■オイラー角

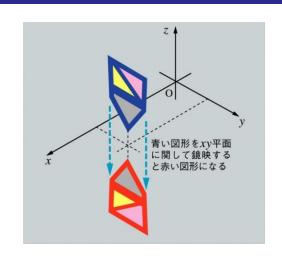
- CGソフトウェアで一般的な手法
- 1. x軸周りにα
- 2. y軸周りにβ
- 3. z軸周りγ
- ・順番に回転する



鏡映とスキュー(せん断)

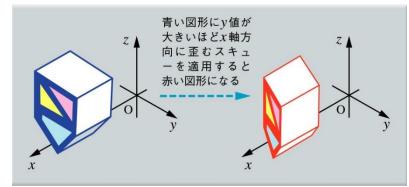
■xy 平面に関する鏡映

$$\bullet \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$



■y 値が大きいほどx 軸方向に歪むスキュー

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$



■幾何学変換の一般的な行列表現

$$\bullet \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ e & f & g \\ i & j & k \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

- 拡大・縮小,回転,スキュー
- : 平行移動

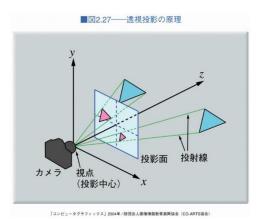
■種類

- 剛体変換:形が変わらないアフィン変換
 - 平行移動,回転

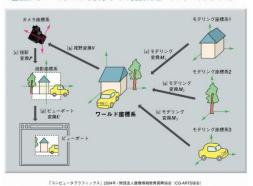
次回

■CG のための数学的基礎 2

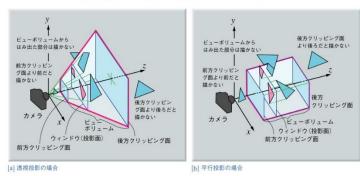
~投影変換~



■図2.43 ----モデルから表示までの変換(ビューイングパイプライン)



■図2.31 ――ビューボリュームとクリッピング



「コンピュータグラフィックス」2004年 / 財団法人画像情報教育振興協会(CG-ARTS協会)

